Journal of Organometallic Chemistry, 145 (1978) C1–C3 © Elsevier Sequoia S.A., Lausanne – Printed in The Netherlands

Preliminary communication

PREPARATION OF α , β -UNSATURATED ACYLTRIMETHYLSILANES

NAOKI MINAMI, TORU ABE, and ISAO KUWAJIMA*

Department of Chemistry, Tokyo Institute of Technology, Ookayama, Meguro-ku, Tokyo 152 (Japan) (Received September 26th, 1977)

Summary

 α , β -Unsaturated acyltrimethylsilanes were prepared in good yield from the trimethylsilyl enol ethers of the corresponding acylsilanes through phenylsul-fenylation and oxidation, followed by thermal decomposition of the resulting α -phenylsulfinylacylsilanes.

In connection with our studies of the use of organosilicon compounds as reagents in organic synthesis, we required α , β -unsaturated acylsilanes. Although acylsilanes are well known [1], there have been no reports on the synthesis of α , β -unsaturated derivatives. We recently reported an efficient method for the preparation of trimethylsilyl enol ethers of acyltrimethylsilanes, (I) through the oxidation reaction of the corresponding lithium 1,1-bis(trimethylsilyl)alk-1oxide with benzophenone $[2,3]^*$. We describe here a simple preparative method for α , β -unsaturated acyltrimethylsilanes which is based on the silvl enol ether I. In this process, I was treated with phenylsulfenyl chloride (10% excess) in carbon tetrachloride at -20° C for 5 min. Bulb to bulb distillation or chromatography on silica gel of the reaction mixture afforded the corresponding α -phenylsulfenylacyltrimethylsilane (II) in excellent yield. Substrates possessing a remote C=C bond (e.g., Ic) also gave the mono-sulfenylated product II in satisfactory yield on such treatment at lower temperature (-78°) in methylene chloride, although the formation of the bis-sulfenylated product (12%) could not be excluded completely. Oxidation of the resulting sulfide II with *m*-chloroperbenzoic acid proceeded in the expected manner and afforded III in good vield when carried out at 0°C for 5 min in methylene chloride, followed by chromatography on silica gel. The oxidation of II with four equivalents of sodium metaperiodate [4] was quite slow in aqueous methanol at room temperature. Some slight difficulty also was encountered in the isolation of sulfoxide

^{*} For the preparation of 1,1-bis(trimethylsilyl)alkan-1-o1 see ref. 3.

III in that partial conversion to the corresponding α -phenylsulfinyl aldehyde occurred when it was heated in the presence of water. Thermal decomposition of the sulfoxide III [5] to give the desired α , β -unsaturated acyltrimethylsilane IV could be achieved by heating III in hexane for 5 h. In this decomposition reaction employment of higher temperatures for shorter period does not give IV

$\begin{array}{c} OSiMe_{3} \\ I \\ RCH_{2} CH=CSiMe_{3} \end{array} \begin{array}{c} C_{6} H_{5} SC \\ \end{array}$	$SC_6 H_5$ $\xrightarrow{I} RCH_2 CHCOSiMe_3$
$(Ia) R = C_3 H_7$	(IIa) 93% (96—98°C/0.07 Torr)
(Ib) $R = C_5 H_{11}$	(IIb) 94% (122–125°C/0.07 Torr)
(Ic) $\mathbf{R} = \mathbf{CH}_2 = \mathbf{CH}(\mathbf{CH}_2)_6$	(IIc) 75% (133–135°C/0.07 Torr)
(Id) $R = C_6 H_5$	(IId) 96% (132–134°C/0.08 Torr)

IIa—IId-	MCPBA	O=SC ₆ H ₅ / •RCH ₂ CHCOSiMe ₃ (IIIa) 87%
		(IIIb) 85% (IIIc) 84% (IIId) 83%

IIIa−IIId → RCH=CHCOSiMe₃ (IVa) 76% (67−70°C/4.5 Torr) (IVb) 76% (53−55°C/0.1 Torr) (IVc) 79% (75−77°C/0.07 Torr) (IVd) 92% (77−79°C/0.1 Torr)

without formation of by-product. For example, heating IIIa at 135°C for 1 h in xylene resulted in an appreciable decrease of the yield (42% for IVa), accompanied by formation of other unidentified products. Satisfactory analytical data were obtained for II and IV.

The products IIa, IIIa, and IVa exhibited the following spectral data.

IIa: NMR (CCl₄, methylene chloride as internal standard); δ (ppm) 0.27 (s, 9H), 0.95 (t, J 5 Hz, 3H), 1.15–2.10 (m, 6H), 3.72 (t, J 6 Hz, 1H), and 7.25 (s, 5H). IR (neat); 1632, 1249, and 843 cm⁻¹.

IIIa (a mixture of diastereomers): (CCl₄); δ (ppm) – 0.05 (s, 5.4H, SiMe₃), 0.23 (s, 3.6H, SiMe₃), 0.86 (t, J 5 Hz, 3H), 1.05–1.55 (m, 4H), 1.55–2.10 (m, 2H), 4.00 (t, J 6 Hz, 0.4H, SO–CH–CO), 4.13 (t, J 6 Hz, 0.6H, SO–CH–CO), and 7.50 (s, 5H). IR (neat); 1638, 1250, 1050, and 847 cm⁻¹.

IVa: NMR (CCl₄); δ (ppm) 0.25 (s, 9H), 0.97 (t, J 7 Hz, 3H), 1.55 (m, 2H), 2.25 (q, J 6 Hz, 2H), 6.12 (d.d, J 1.5 and 15 Hz, 1H), and 6.63 (d.t, J 15 and 6 Hz, 1H). IR (neat); 1635, 1590, 1250, 975, and 845 cm⁻¹. UV (cyclohexane); $\lambda_{max}(\epsilon)$, 425 (53), 440 (46), and 445 (34) nm.

C2

References

- A.G. Brook, J.M. Duff, P.F. Jones, and N.R. Davis, J. Amer. Chem. Soc., 89 (1967) 431; E.J. Corey, D. Seebach, and R. Freedman, ibid., 89 (1967) 434; G.J.D. Peddle, J. Organometal. Chem., 14 (1968) 139; J. Dunoguès, M. Bolourtchian, R. Calas, N. Duffaut and J.P. Picard, ibid., 43 (1972) 157; P. Bourgeois, ibid., 76 (1974) Cl; P. Bourgeois, J. Dunoguès and N. Duffaut, ibid., 80 (1974) C20; E.M. Dexheimer and L. Spialter, ibid., 107 (1976) 229. See also; A.G. Brook, Advan. Organometal. Chem., 7 (1968) 95.
- 2 I. Kuwajima, M. Arai and T. Sato, J. Amer. Chem. Soc., 99 (1977) 4181.
- 3 I. Kuwajima, T. Sato, N. Minami and T. Abe, Tetrahedron Lett., (1976) 1591.
- 4 C.R. Johnson and J.E. Keiser, Org. Synth., 46 (1966) 78.
- 5 B.M. Trost, T.N. Salzmann and K. Hiroi, J. Amer. Chem. Soc., 98 (1976) 4887.